Caspase-mediated apoptosis of trophoblasts in term human placental villi is restricted to cytotrophoblasts and absent from the multinucleated syncytiotrophoblast
نویسندگان
چکیده
Human placental villi are surfaced by a multinucleated and terminally differentiated epithelium, the syncytiotrophoblast, with a subjacent layer of mononucleated cytotrophoblasts that can divide and fuse to replenish the syncytiotrophoblast. The objectives of this study were i) to develop an approach to definitively identify and distinguish cytotrophoblasts from the syncytiotrophoblast, ii) to unambiguously determine the relative susceptibility of villous cytotrophoblasts and syncytiotrophoblast to constitutive and stress-induced apoptosis mediated by caspases, and iii) to understand the progression of apoptosis in villous trophoblasts. Confocal microscopy with co-staining for E-cadherin and DNA allowed us to clearly distinguish the syncytiotrophoblast from cytotrophoblasts and identified that many cytotrophoblasts are deeply interdigitated into the syncytiotrophoblast. Staining for specific markers of caspase-mediated apoptosis indicate that apoptosis occurs readily in cytotrophoblasts but is remarkably inhibited in the syncytiotrophoblast. To determine if an apoptotic cell or cell fragment was from a cytotrophoblast or syncytiotrophoblast, we found co-staining with E-cadherin along with a marker for apoptosis was essential: in the absence of E-cadherin staining, apoptotic cytotrophoblasts would easily be mistaken as representing localized regions of apoptosis in the syncytiotrophoblast. Regions with perivillous fibrin-containing fibrinoid contain the remnants of trophoblast apoptosis, and we propose this apoptosis occurs only after physical isolation of a region of the syncytium from the main body of the syncytium. We propose models for the progression of apoptosis in villous cytotrophoblasts and for why caspase-mediated apoptosis does not occur within the syncytium of placental villi.
منابع مشابه
Placental protein 13 and decidual zones of necrosis: an immunologic diversion that may be linked to preeclampsia.
We evaluated the role of placental protein 13 (PP13; galectin 13) in the process of trophoblast invasion and decidual necrosis. Immunohistochemical analysis for PP13, immune cells, human placental lactogen, cytokeratin, and apoptosis markers was performed on 20 elective pregnancy termination specimens between 6 and 15 weeks of gestation. Placental protein 13 was localized to syncytiotrophoblast...
متن کاملEvidence for Differential Glycosylation of Trophoblast Cell Types.
Human placental villi are surfaced by the syncytiotrophoblast (STB), with a layer of cytotrophoblasts (CTB) positioned just beneath the STB. STB in normal term pregnancies is exposed to maternal immune cells in the placental intervillous space. Extravillous cytotrophoblasts (EVT) invade the decidua and spiral arteries, where they act in conjunction with natural killer (NK) cells to convert the ...
متن کاملDifferential Triiodothyronine Responsiveness and Transport by Human Cytotrophoblasts from Normal and Growth-Restricted Pregnancies
CONTEXT Abnormal placentation in human pregnancy is associated with intrauterine fetal growth restriction (IUGR). Our group has previously reported the association between severe IUGR, lower fetal circulating concentrations of thyroid hormones (THs), and altered expression of TH receptors and TH transporters within human placental villi. We postulate that altered TH bioavailability to trophobla...
متن کاملPeroxisome proliferator-activated receptor-gamma modulates differentiation of human trophoblast in a ligand-specific manner.
The ligand-dependent nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) regulates the differentiation of several tissues and cell types. PPARgamma was recently determined to be essential for murine placental development and differentiation. We therefore assessed the influence of PPARgamma on differentiation of human placental trophoblasts. We initially used immunohist...
متن کاملI-7: Maternal Signalling to the Placenta
Background: Though it is well established that maternal blood-borne signals influence highly the growth of the placenta, the mechanisms are not known. In vitro trophoblast culture models are limited by an inability to reconstruct the polarised bilayer of the human hemochorial placenta. We have used a first trimester villous tissue explant system to investigate how growth factors interact with p...
متن کامل